Vea el estado de su SSD y otras estadísticas ocultas con esta herramienta gratuita

CrystalDiskInfo es una herramienta gratuita que puede brindarle información importante. ¿Alguna vez has mirado a tu gato mientras miraba una pared en blanco y pensó: «¿Qué está pensando?» Ciertamente lo he hecho, y también he hecho lo mismo con mi SSD: preguntándome si estaba funcionando bien, si se estaba calentando demasiado, si estaba sobrecargado de trabajo y si estaba funcionando al máximo rendimiento. Dado que su SSD generalmente contiene su sistema operativo y muchos de sus datos críticos, es importante controlarlo (y hacer una copia de seguridad de sus datos). Desafortunadamente, no hay una herramienta incorporada de Windows que le permita verificar el estado de su SSD. Aquí es donde CrystalDiskInfo viene al rescate. Esta herramienta de software gratuita le mostrará una gran cantidad de información vital sobre cualquier dispositivo de almacenamiento conectado a su placa base, y es una bendición especialmente para los usuarios de SSD. (Usamos su utilidad complementaria, CrystalDiskMark, para ayudarnos a evaluar y comparar los SSD, como testimonio de su utilidad). Para echar un vistazo bajo el capó de su unidad, primero debe descargar una copia gratuita de CrystalDiskInfo. Cuando abras y ejecutes el programa, te dará un montón de información útil sobre la unidad seleccionada: a continuación se muestra un SSD Intel 660p de 1 TB. Lo más importante aquí son todos los datos en el cuadro en la parte superior de la pantalla, particularmente el cuadro simple etiquetado como «Estado de salud«. Se trata de una traducción de los datos S.M.A.R.T. de la unidad, una función de autoinforme que todas las unidades tienen hoy en día, que puede registrar cuando algo va mal con el componente. Si ve algo que no sea «Bueno» en el cuadro Estado de salud, uno de los valores S.M.A.R.T. en la tabla en la parte inferior de la pantalla se resaltará para su atención; independientemente del problema específico, sería prudente comenzar a comprar un nuevo SSD. Otra información útil se encuentra en la esquina superior derecha, donde muestra la cantidad de datos que se han escrito en la unidad, en este caso, unos 62 TB. Es importante saber esto, ya que la mayoría, si no todos, los SSD incluyen una clasificación de resistencia, por lo que eso le da una idea de cuánta vida útil le queda a su unidad. Para este SSD, Intel afirma que puede escribir hasta 200 TB antes de que se agote, por lo que a esta unidad le queda bastante vida. También es posible que tenga curiosidad por ver la cantidad de veces que se ha encendido y cuántas horas ha estado funcionando, pero ninguna de esas estadísticas tendrá un impacto en el rendimiento de la unidad. En la sección central hay información útil para verificar que su unidad está funcionando a su capacidad máxima, que se indica en el cuadro etiquetado como «Modo de transferencia». Dado que las placas base de hoy en día tienen varias ranuras SSD M.2, es útil comprobar que la ranura que está utilizando es una verdadera ranura PCIe X4 en lugar de una ranura X2 más lenta. Finalmente, si realmente desea ver los datos S.M.A.R.T. reales que produce su unidad, la mayoría de los fabricantes de unidades ofrecen su propio software de administración de unidades que se los mostrará. Así es como se ve Intel. Dicho esto, la mayoría de las personas necesitarán buscar mucho en Google para comprender qué significan todos los números. No existe una definición universal de las propiedades que debe supervisar una unidad, y los valores aceptables pueden cambiar de una unidad a otra y de una empresa a otra. Además, no es realmente agradable buscar en Google «Porcentaje normalizado de repuesto disponible de la capacidad de repuesto restante disponible», que es uno de los atributos de Intel S.M.A.R.T. Así que créanos: sólo tienes que utilizar Crystal Disk Info. Es más fácil de manejar, fácil de entender y no se puede superar el precio de lo gratuito.
¿Su SSD está a punto de morir? 10 señales de advertencia que no debes ignorar

Un SSD que está al final de su vida útil puede presentar todo tipo de signos y síntomas extraños. En 2024, casi todos los ordenadores modernos utilizan SSD como formato principal de almacenamiento de datos (excepto, quizás, los Chromebook económicos). Tal vez haya investigado para obtener los mejores SSD que valgan su dinero, equipando sus computadoras de escritorio y portátiles para obtener el máximo rendimiento. Lamentablemente, los SSD no duran para siempre. Claro, su rendimiento y durabilidad han mejorado a lo largo de los años, pero incluso los que tienen impresionantes clasificaciones de terabytes escritos (TBW) y largas garantías aún mueren eventualmente. También sabrás que viene antes de que suceda. Estas son algunas señales de advertencia clave de que su SSD está al final de su vida útil y lo que puede hacer al respecto, si es que puede hacer algo. Lo primero es lo primero: ¡Lee esto! Si tiene la más mínima sospecha de que su SSD podría estar muriendo, lo primero que debe hacer, incluso antes de terminar el resto de este artículo, es hacer una copia de seguridad de sus datos importantes ahora mismo. Sí, es posible recuperar datos de SSD muertos. Pero no siempre es fácil, nunca está garantizado, llevará mucho tiempo y puede costarle una gran cantidad de dinero. No te arriesgues a perder tus archivos de obras vitales, fotos, videos, juegos guardados, etc. Las copias de seguridad valen la pena. 1. Tu PC se congela o se bloquea El sistema se congela, se bloquea, se reinicia aleatoriamente y se producen errores de pantalla azul. Todos estos pueden ser síntomas de todo tipo de problemas con su PC, lo que significa que también pueden ser signos de que algo anda mal con su SSD. Si no encuentra ningún problema con su CPU o RAM, y ha actualizado todos sus controladores y actualizaciones de Windows, y si no puede identificar el problema en otro lugar, entonces existe la posibilidad de que estos bloqueos aleatorios sean causados por un SSD que se está estropeando. Siga leyendo para obtener más señales de advertencia que pueden ayudar a corroborar si el problema se debe a su SSD o a otra cosa. 2. Tu PC se siente más lento de lo habitual Los SSD se ralentizan a medida que se llenan de datos, pero también se ralentizan con el tiempo debido al desgaste de las celdas de memoria. Si bien los SSD modernos utilizan una técnica llamada nivelación de desgaste para asegurarse de que los ciclos de escritura/borrado se distribuyan a través de las celdas SSD de la manera más uniforme posible, algunas celdas inevitablemente se desgastarán más rápido que otras. A medida que eso sucede, el rendimiento de la unidad puede disminuir porque el controlador tiene que trabajar cada vez más para administrar los datos, lo que provoca ralentizaciones cuando se realizan comandos de escritura/borrado. Los nuevos SSD también vienen con espacio adicional de «sobreaprovisionamiento» que se puede utilizar para mantener el rendimiento y la capacidad a medida que las celdas se desgastan. Sin embargo, a medida que este espacio sobreaprovisionado se agota y esas celdas a su vez se desgastan, el rendimiento general de la unidad volverá a verse afectado. Si el impacto en el rendimiento de su SSD es reciente, intente mover archivos grandes a otra unidad y vea si eso ayuda. Tal vez liberar algo de espacio, especialmente si su SSD está cerca de su capacidad, es todo lo que necesita para recuperar la velocidad. Pero si su SSD está lejos de estar lleno y el rendimiento es notablemente más lento, es muy probable que esté muriendo. Si bien es probable que la muerte no sea inminente, es posible que no le quede tanta vida. 3. Tus archivos son inaccesibles o están dañados Si una celda de memoria activa se degrada hasta el punto de ser completamente inaccesible, es posible que los archivos de la unidad se corrompan o sean completamente inaccesibles. Por ejemplo, cuando intenta acceder a ciertos archivos en su SSD, Windows puede darle un error «El archivo o directorio está dañado e ilegible». Este error puede ser intermitente al principio, pero si sigue ocurriendo, especialmente con los mismos archivos, es posible que tenga un SSD moribundo en sus manos. Mientras tanto, ejecute chkdsk para ver si Windows puede reparar los errores de la unidad. A veces podría ser todo lo que necesita para solucionar el problema. 4. Obtienes errores de reparación del sistema de archivos Si aparece una pantalla azul específica de la muerte que dice que el sistema de archivos necesita una reparación, es una señal de que se ha producido una corrupción importante de datos dentro de los propios archivos de Windows y que necesitan reparación. A veces, esta corrupción de datos puede ser causada por software, pero si ocurre varias veces y/o el daño del archivo es particularmente grave, entonces es probable que sea causado por un SSD defectuoso. Es posible que pueda solucionar esto con el propio servicio de reparación de Windows (que se iniciará automáticamente cuando Windows no arranque correctamente después de un error como este), pero es una clara señal de que su unidad podría estar en problemas y, como mínimo, amerita una investigación más profunda. 6. Ves bloques defectuosos en el Visor de eventos Si le preocupa que los bloqueos recientes, las pantallas azules o la caída del rendimiento puedan deberse a un SSD defectuoso, es posible que pueda usar el Visor de eventos de Windows para ver qué puede haber detrás de ellos. Compruebe el Visor de eventos de Windows para ver si los motivos de los bloqueos recientes tienen algo que ver con su SSD. Debes estar especialmente atento a cualquier indicio de «bloques defectuosos», ya que es una señal segura de que tu SSD está teniendo problemas y puede necesitar ser reemplazado pronto. Si estas referencias de «bloques incorrectos» se producen para su unidad de arranque principal, o una unidad que contiene datos importantes como archivos de trabajo, sáquelos de la unidad lo antes posible antes de realizar una verificación del
¿Cuánto dura un SSD? Es una pregunta difícil de responder

¿Podrían estar contados los días de su antiguo SSD? He estado disfrutando de las velocidades ultrarrápidas de los SSD (unidades de estado sólido) para almacenar y restaurar datos desde hace un tiempo. Para los juegos, proporcionan tiempos de carga rápidos, admiten los gráficos más recientes y, como beneficio adicional, producen menos calor que los discos mecánicos de la vieja escuela que solía usar. Pero después de haber perdido los datos de un viejo HDD (unidad de disco duro) cuando se activó y falló en mí, ahora me pregunto sobre la vida útil de mis SSD. Mi equipo de juegos de escritorio alberga un par que tienen unos ocho años. Entonces, ¿debería preocuparme? ¿Podrían morir pronto mis viejas SSD? La respuesta corta es sí, debería preocuparme un poco por su edad, especialmente porque les escribo mucho. Esto se debe a que, como todo tipo de hardware, los SSD tienen una vida útil limitada. A pesar de sus ventajas de velocidad y latencia sobre los discos duros mecánicos, estos dispositivos de almacenamiento no son inmunes a la degradación con el tiempo. La razón por la que se degradan es que, al igual que las unidades USB, las SSD son un tipo de dispositivo de memoria flash que se basa en chips flash NAND o V-NAND para almacenar y recuperar datos. Con el uso, después de un cierto número de ciclos de programa/borrado (P/E), los transistores de los chips NAND se desgastan ligeramente y pueden desgastarse hasta el punto de perder su capacidad de retención de carga y volverse menos fiables para la retención de datos. Con suficiente desgaste, estas unidades dejarán de funcionar por completo. La vida útil de los SSD no es una ciencia exacta Desafortunadamente, no hay una forma exacta de determinar cuánto tiempo durará un SSD, pero podemos estimar aproximadamente la vida útil en función de diferentes factores. Los fabricantes suelen afirmar una vida útil de las SSD de entre cinco y siete años, basándose en cálculos teóricos y en una serie de indicadores prevalecientes. Estos incluyen factores como: Las investigaciones respaldan estas cosas como factores importantes que pueden determinar cuánto durará un SSD. Pero para el usuario promedio, estas métricas van a ser difíciles de controlar. Un indicador más fácil es simplemente la antigüedad de su SSD. De hecho, un estudio conjunto de la Universidad de Toronto, Canadá, y Google descubrió que la edad es el predictor más fuerte de la vida útil de las SSD. El estudio, que se llevó a cabo en un centro de datos de Google, encontró que los SSD más antiguos experimentaban muchos más errores de retención de datos que los SSD más nuevos. Curiosamente, también encontró que los SSD son mucho más confiables que los HDD, requiriendo reemplazo a solo una cuarta parte de la tasa. Por qué no se puede confiar exactamente en las estimaciones de los fabricantes Los cálculos teóricos de los fabricantes generalmente no tienen en cuenta las variables y condiciones del mundo real que afectarán a las SSD. Si la estimación de un fabricante es de 5 a 7 años, un SSD podría durar fácilmente más de 10 años con un uso ligero y poco frecuente y sin estar expuesto a otras condiciones desfavorables. Pero lo contrario también podría ser cierto: con un uso intensivo o frecuente y condiciones desfavorables, un SDD puede durar solo de 3 a 5 años. En este último punto, el TBW de una unidad no debería importar demasiado para el uso doméstico. De hecho, tendría que escribir datos casi constantemente en un período de 7 años para que sea la razón por la que su SSD patea el cubo. ¿Cuántos datos necesitarías escribir? Las investigaciones muestran que, en el mejor de los casos, un SSD de 256 GB puede tardar hasta 1 petabyte (es decir, 1.000 terabytes) antes de fallar. Los SSD de mayor capacidad tomarán muchos más datos que eso. El tipo de SDD que está utilizando (SLC, MLC o TLC), ahora eso es un asunto diferente. Hay una gran diferencia entre los tipos de SSD mejor valorados y los más caros en lo que respecta al número de ciclos P/E que pueden soportar. Como regla general, puede utilizar lo siguiente como guía: Además de los datos y la antigüedad, los factores ambientales, como los niveles de temperatura y humedad, y el grado en que el SSD está expuesto a factores estresantes como las vibraciones, también tendrán un impacto en su vida útil. Cómo prolongar la vida útil de un SSD A partir de la información anterior, puede ver que usar un SSD con menos frecuencia y escribir menos datos en él a lo largo del tiempo son dos formas en que podría mejorar su vida útil. Pero si eres como yo, no vas a querer hacer ninguna de esas cosas. Una mejor manera es asegurarse de comprar una unidad de un fabricante de renombre en cuya calidad confíe, ya que la calidad también puede ser un factor determinante en la longevidad de la SSD. También puede controlar las condiciones ambientales a las que está expuesto un convertidor: por ejemplo, mantenga el calor y la humedad al mínimo y utilice un sistema de alimentación ininterrumpida y/o un protector contra sobretensiones para evitar que las fluctuaciones de energía provoquen fallos. También se recomienda mantener una pequeña cantidad de espacio libre, ya que la mayoría de los SSD utilizan un proceso llamado nivelación de desgaste que requiere espacio libre para funcionar. También puede utilizar herramientas para supervisar el estado de su unidad, ya sean programas de software externos como CrystalDiskInfo, o herramientas integradas en la propia unidad, como el panel de control de Western Digital o el Magician de Samsung. Si bien no debe preocuparse demasiado por la longevidad si acaba de comprar un nuevo SSD, si posee una unidad más antigua, también querrá estar atento a las señales clave de que su SSD podría estar a punto de morir. Independientemente de estos pasos, siempre debe recordar hacer una copia de seguridad de sus datos críticos en una unidad externa.
NAND: SK Hynix enviará las primeras memorias de 321 capas en el primer trimestre de 2025

SK Hynix anuncia la producción de sus memorias flash NAND más avanzadas hasta ahora, que cuentan con 321 capas. NAND: Hynix enviará las primeras memorias de 321 capas en 2025 La producción de los módulos de memoria flash NAND de SK Hynix con 321 capas ya ha comenzado y los envíos se proyectan para el primer trimestre de 2025. Las nuevas memorias de 321 capas de SK Hynix van a permitir unidades de almacenamiento cada vez de mayor capacidad, además de abaratar los costes. Las nuevas memorias de SK Hynix utilizan una tecnología que la empresa denomina proceso de «3 plugs». Esta tecnología es supuestamente conocida por su excelente eficiencia de producción, y «…conecta eléctricamente tres conectores a través de un proceso de seguimiento optimizado después de terminar tres veces los procesos de conector». «Para el proceso, SK Hynix desarrolló un material de baja tensión al tiempo que introdujo la tecnología que corrige automáticamente las alineaciones entre los conectores». La explicación es bastante técnica, pero con esto SK Hynix ha logrado mejorar la eficiencia de sus memorias, con todas las ventajas que ello conlleva. Las nuevas memorias de 321 capas utilizan la misma plataforma de desarrollo que las de 238 capas de la generación anterior, con el que han podido mejorar la producción en un 59%. Características y mejoras A día de hoy, estos serian los módulos de memoria con mayor cantidad de capas. Las memorias que mas se acercan son los módulos de Samsung con 280 capas. Se espera que los primeros módulos de memoria con hasta 1 TB de capacidad se comiencen a suministrar a partir del primer trimestre de 2025. Os mantendremos al tanto de todas las novedades.
Revisión de Kingston NV2 SSD: Barato pero arriesgado

Un SSD económico genérico con hardware irregular La Kingston NV2 es uno de esos SSD que es demasiado bueno para ser verdad. El precio es excepcional, especialmente a 2 TB, y se vende como una unidad PCIe 4.0. Sin embargo, no tiene un hardware definitivo en su interior y su rendimiento para nuestras dos muestras es claramente el fondo del barril. También se calienta un poco y es ineficiente en nuestras pruebas. A kilómetros de distancia de los mejores SSDS, la NV2 puede ser una buena unidad secundaria o de respaldo si su presupuesto es absolutamente limitado, pero no se recomienda para uso primario o portátil. Es, en general, un buen ejemplo de caveat emptor: cuidado con el comprador. La NV2 sigue a la anterior NV1 de Kingston, una unidad muy en línea con la filosofía de Kingston de proporcionar unidades baratas a escala. El A400 basado en SATA es el ejemplo perfecto de esto, ya que era una unidad frecuente en las construcciones más baratas. La NV1 siguió su ejemplo y se hizo más popular de lo que quizás merecía. La NV2 es similar en el sentido de que utiliza una mezcolanza de hardware (diferentes controladores y flash NAND de una unidad a otra) que se ofrece a un precio increíblemente bajo. Debería convertirse en algo común, especialmente en regiones con opciones limitadas de SSD. Sin embargo, si realmente tiene alternativas sólidas, busque en otra parte. Características técnicas Producto 250 GB 500 GB 1 TB 2 TB Precios $22.99 $34.99 $54.00 $124.99 Factor de forma M.2 2280 M.2 2280 M.2 2280 M.2 2280 Interfaz / Protocolo PCIe 4.0 x4 / NVMe PCIe 4.0 x4 / NVMe PCIe 4.0 x4 / NVMe PCIe 4.0 x4 / NVMe Controlador Varía Varía Varía Varía DRAM No (HMB) No (HMB) No (HMB) No (HMB) Memoria Varía Varía Varía Varía Lectura secuencial 3.000 MBps 3.500 MBps 3.500 MBps 3.500 MBps Escritura secuencial 1.300 MBps 2.100 MBps 2.100 MBps 2.800 MBps Lectura aleatoria N/A N/A N/A N/A Escritura aleatoria N/A N/A N/A N/A Seguridad N/A N/A N/A N/A Resistencia (TBW) 80 TB 160 TB 320 TB 640 TB Número de pieza SNV2S/250G SNV2S/500G SNV2S/1000G SNV2S/2000G Garantía 3 años 3 años 3 años 3 años La Kingston NV2 está disponible en 250 GB, 500 GB, 1 TB y 2 TB. En el momento de la revisión, el precio de estas capacidades era de 22,99 dólares, 34,99 dólares, 54,00 dólares y 124,99 dólares, respectivamente. Esta unidad suele estar a la venta y las SKU de 1 TB y 2 TB tienen un valor aún mejor. Esta unidad es la A400 de las unidades NVMe y un reemplazo adecuado para la NV1, lo que podría ser bueno o malo dependiendo de cómo se mire. En esencia, es un SSD NVMe muy barato que cumple con los requisitos mínimos para realizar el trabajo. La unidad puede gestionar hasta 3.500 / 2.800 MBps para lectura y escritura secuenciales, respectivamente, pero no tiene especificaciones de rendimiento aleatorias. Esto tiene sentido porque puede venir con más de un controlador y más de un tipo de flash. Sin embargo, las especificaciones de escritura secuencial son tales que solo puede tener QLC a 1 TB y 2 TB. Los valores secuenciales son bajos para una unidad PCIe 4.0 por una buena razón: Kingston los configuró para el controlador y la memoria flash más débiles posibles. La NV2 tiene una garantía de 3 años y puede gestionar 320 TB de escrituras por TB de capacidad. Esto es exactamente lo que se espera de una unidad económica. Software y accesorios La Kingston NV2 es una unidad básica, pero Kingston ofrece un administrador de SSD en su sitio. Tiene la funcionalidad típica de la caja de herramientas SSD y es capaz de mostrar la información y el estado del disco, actualizar el firmware de la unidad y borrar las unidades de forma segura. Solo funciona en Microsoft Windows. Una mirada más de cerca Aunque estamos viendo los 2TB en las fotos aquí, también se mencionará el 1TB porque el flash y el controlador de la Kingston NV2 variarán de una unidad a otra. La unidad de 2 TB es de un solo lado con un controlador sin DRAM y cuatro paquetes NAND. No hay mucho en esta unidad, pero siempre debe ser de un solo lado para lo que importa. El modelo de 2 TB que muestreamos utiliza el controlador de SM2267XT SMI. Este es uno de esos controladores SSD PCIe 4.0 de nivel de entrada que apenas califica para el apodo 4.0. Es similar al controlador Phison E19T utilizado en unidades como el WD Black SN750 SE o el Inland TN436. Esta tecnología tiene un bus de 1200 MT/s que, con cuatro canales, significa que puede saturar un enlace PCIe 3.0 x4, al igual que los controladores del SK hynix Gold P31 y WD Blue SN570. A todos los efectos, esto hace que el controlador sea un SM2263XT con mayor ancho de banda e IOPS, pero no es realmente una tecnología nueva como la SM2269XT. Este rendimiento requiere una velocidad de reloj del núcleo mucho mayor. Esto significa que la eficiencia energética debería ser bastante terrible para una unidad económica en comparación con otras opciones PCIe 4.0 sin DRAM más nuevas, como la HP FX900 y la Silicon Power UD90. Nuestra muestra de 1 TB también usa el SM2267XT, pero esta unidad también se ha visto con el SM2269XT más nuevo. Dadas las especificaciones de rendimiento limitadas, es posible que esta unidad también venga con el E19T comparable. Otros controladores más rápidos más cercanos al SM2267XT, como el InnoGrit IG5220 y el Phison E21T, también son técnicamente posibles. Cuatro módulos NAND de 512 GB con cuatro matrices de 128 GB entregan un total de 2 TB. Este es el QLC de 144 capas de Intel. Este flash se utiliza en el Intel 670p y el Solidigm P41 Plus. Podría decirse que sigue siendo el mejor QLC del mercado, pero sigue siendo QLC. Nuestra muestra de 1 TB llegó con BiCS5 TLC de 112 capas
Qué buscar en un SSD interno

NVMe o SATA Solo busque SATA si su computadora o dispositivo no es compatible con NVMe, que es mucho más rápido. Tenga en cuenta que una ranura M.2 en una computadora antigua podría ser mSATA en lugar de NVMe. Lea la guía del usuario o el manual para ver si es compatible con NVMe/NVMe-bootable. Debería ser ambas cosas para aprovechar al máximo NVMe. DRAM o HMB Algunos SSD utilizan DRAM para el almacenamiento en caché primario y operaciones aleatorias más rápidas, mientras que otros renuncian al coste de la DRAM y utilizan una técnica llamada búfer de memoria del host (HMB). HMB hace exactamente lo que parece, emplea la memoria de su computadora para el almacenamiento en caché primario. Después de un comienzo difícil, HMB ha desarrollado un maravilloso rendimiento de transferencia secuencial, aunque como se insinúa, las operaciones aleatorias todavía están por detrás de los diseños de DRAM. Si quieres el mejor rendimiento en general, y especialmente aleatorio, entonces quieres un diseño de DRAM. Sin embargo, pagará por ello: los diseños de HMB suelen costar la mitad del precio, y los últimos modelos de HMB son tan rápidos con transferencias secuenciales como sus hermanos más caros. Ten en cuenta que hay dispositivos, como la PS5, que no son compatibles con HMB. TLC o QLC NAND está disponible en los sabores TLC (celda de triple nivel/3 bits) y QLC (celda de nivel cuádruple/4 bits), que incluyen una variedad de subtipos. Gracias a una técnica de almacenamiento en caché secundaria que consiste en escribir cualquiera de estos tipos de NAND como SLC más antiguo (celda de una sola capa / 1 bit / se requiere mucha menos verificación de errores), hay poca diferencia en la velocidad máxima, siempre que haya suficiente NAND asignada para la tarea de almacenamiento en caché. Por lo general, lo hay, a menos que escribas una gran cantidad de datos a la vez, como en nuestra prueba de escritura de 450 GB. Al escribir de forma nativa (sin almacenamiento en caché secundario), las velocidades pueden caer a 200 MBps para TLC y 100 MBps para QLC. La otra diferencia es la longevidad prometida. La mayoría de los SSD TLC que probamos cuentan con una clasificación de al menos 600 TBW, mientras que los SSD QLC rondan los 250 TBW. Consulte nuestra sección sobre «Clasificación TBW» para obtener más información. Generación PCIe Un SSD NVMe no funcionará más rápido que la generación PCIe de la CPU/placa base en la que se encuentra. Es decir, instalar un SSD PCIe 5.0 en un sistema PCIe 3.0/4.0 no tiene sentido. En realidad, como Windows y la mayoría del software de Windows no admite varias colas, un factor importante en el rendimiento de NVMe, puede ahorrar mucho dinero sin sacrificar mucha velocidad al apegarse a PCIe 4.0, incluso en placas base 5.0. Tenga en cuenta que el rendimiento de NVMe, incluso en PCIe 3.0, es increíblemente rápido y casi imposible de medir subjetivamente. Básicamente, no compres de más. Capacidad Todo lo que puedas permitirte. Esto oscila entre 250 GB y 8 TB. Tenga en cuenta que los SSD de menos de 1 TB a menudo escriben más lento que los de mayor capacidad debido a que hay menos chips para disparar datos. Más capacidad también significa más NAND para el almacenamiento en caché secundario y menos posibilidades de que vea ralentizaciones en escrituras largas. Precio La mayoría de los SSD internos tienen una garantía de cinco años, mientras que los externos tienen una garantía más probable de tres años. Estos no varían mucho, pero asegúrate de que no sea menos que eso. La garantía puede ser anulada por el siguiente punto: TBW. Clasificación TBW El TBW, o terabytes que se pueden escribir, es la estimación/clasificación del fabricante de la cantidad de datos que se pueden escribir en un SSD antes de que se transforme en un dispositivo de solo lectura. Esto se debe al desgaste de las células. Cuanto más alta sea la calificación de TBW, mejor, aunque la mayoría de los usuarios no escribirán tantos datos como creen. TBW es como las millas en la garantía de un automóvil, abrogando la garantía si se excede. Para sacar el máximo provecho de una unidad NVMe, desea ejecutar su sistema operativo fuera de ella, lo que requiere un sistema que pueda arrancar desde NVMe. Esta será cualquier máquina nueva, y probablemente cualquier cosa producida en los últimos 10 años, pero compruébelo. De hecho, la mayoría de las PC nuevas ya cuentan con SSD NVMe, por lo que es probable que esté comprando una actualización o algo para llenar las ranuras M.2 adicionales. Qué buscar en un SSD externo Más allá de la clasificación IP (robustez), el estilo y la portabilidad, todo lo que hay que tener en cuenta para un SSD externo es el bus en el que se ejecuta. Las SSD USB de 5 Gbps (3.x) están limitadas a 550 MBps, las SSD USB (3.1) de 10 Gbps alcanzan un máximo de 1 GBps, las USB de 20 GBps (USB 3.2×2 o USB4) a 2 GBps y las USB (USB4) de 40 Gbps a más de 3 GBps. Thunderbolt 3/4 son de 30 Gbps y 3 GBps también. Tenga en cuenta que el SSD USB 3.2×2 requiere un puerto 3.2×2 o USB 4 para los 20 Gbps completos. Conectado a un puerto Thunderbolt 3/4, estará limitado a 10 Gbps. No estamos seguros de por qué esta limitación SSD, sí. ¿Disco duro, tal vez? La vida es simplemente mejor si está ejecutando su computadora con un SSD. Lo más probable es que en estos días ya lo estés. Si no es así, actualízalo. Léelo ahora y agradécenos más tarde. Dicho esto…. Los SSD siguen costando mucho más por gigabyte que los discos duros mecánicos, y actualmente alcanzan un máximo de 8 TB, mientras que los HDD de 3,5 pulgadas alcanzan la friolera de 30 TB. Debemos mencionar que los últimos discos duros pueden transferir datos a casi 300 MBps, que es mucho
SSD PCIe 3.0: Los fabricantes van a descontinuar estas unidades para centrarse en PCIe 4.0/5.0

Los grandes fabricantes de SSD parece estar abandonando aquellas unidades con interfaz PCIe 3.0, centrándose en las unidades PCIe 4.0 y PCIe 5.0. SSD PCIe 3.0: Los fabricantes van a descontinuar estas unidades Según informa el medio STH (ServerTheHome), los fabricantes de SSD están de acuerdo en que las unidades SSD PCIe 3.0 van a dejar de fabricarse para centrarse en generaciones más nuevas de almacenamiento en estado sólido. Al parecer, esta medida no solo estaría afectando al segmento empresarial, también al segmento de PC, por lo que no sería extraño que comencemos a ver cada vez más escasez de este tipo de unidades de almacenamiento PCIe 3.0, direccionando a los futuros compradores de unidades de SSD a que adquieran unidades PCIe 4.0 y PCIe 5.0. Creemos que esto también vendría acompañado por unidades SSD PCIe 4.0/5.0 cada vez más asequibles. El estándar PCIe 3.0 lleva con nosotros unos 14 años, por lo que los fabricantes ya ven hora de “jubilar” a las unidades SSD de este tipo. Esto traerá varios beneficios, por el lado de los usuarios de PC, la transición a PCIe 4.0 y PCIe 5.0 dará un salto de rendimiento importante, y por el lado de los fabricantes, les permite centrar el desarrollo a unidades más nuevas y deshacerse de inventario que pueden usar para ellas. Actualmente, la mayoría de las nuevas unidades que se están anunciando ya cuentan con la interfaz PCIe 5.0 y algunas pocas novedades tenemos de unidades PCIe 4.0, por lo que en unos años este último también correría con la misma suerte. Después de todo, la interfaz PCIe 4.0 ya tiene unos 7 años de antigüedad. Lo que estaría frenando esta transición es que las unidades PCIe 4.0 se sigue vendiendo a muy buen ritmo. Las unidades SSD PCIe 5.0 mas nuevas tienen la capacidad de ofrecer velocidades de hasta 14 GB/s, mientras que los SSD más rápido soportan velocidades de 3.5 GB/s, aproximadamente. Os mantendremos informados.
Intel Optane, análisis: la alternativa al SSD que quiere ser mucho más

Los SSD han supuesto tal revolución en el almacenamiento de nuestros PCs que las tecnologías que las diferentes compañías proponen como alternativa las acogemos con bastante entusiasmo. Es el caso de las Intel Optane, memorias no volátiles con tecnología 3D Xpoint. ¿Son en realidad la revolución que prometen? Así funcionan las memorias Intel Optane Intel Optane es el nombre comercial que reciben las memorias de tipo no volátil basadas en tecnología 3D Xpoint, desarrollo que ha partido de cero para sustituir a la NAND que se usa actualmente en las unidades SSD. Su máximo responsable es Intel, quien sacó al mercado hace unas semanas las primeras opciones comerciales para los consumidores. Por ahora su objetivo es acompañar al almacenamiento tradicional y conseguir menos latencia y más velocidad, pero podríamos estar hablando de una opción de futuro incluso para la RAM del equipo. A nivel técnico, la memoria Intel Octane consigue una velocidad de lectura aleatoria que mejora a las de las NAND básicos. En latencia las cifras son todavía mejores. Sin embargo, en procesos de escritura esa ventaja se desvanece y queda neutralizada por un SSD de nivel. Eso dice la teoría y el análisis de su ficha técnica. 16 GB 32 GB Tipo M.2 NVMe 1.1 M.2 NVMe 1.1 Interfaz PCIe 3.0 x2 PCIe 3.0 x2 Lectura secuencial 900 MB/s 1350 MB/s Escritura secuencial 145 MB/s 290 MB/s Lectura aleatoria 190k IOPS 240k IOPS Escritura aleatoria 35k IOPS 65k IOPS Latencia lectura 7 µs 9 µs Latencia escritura 18 µs 30 µs Consumo 3,5 W 3,5 W Reposo 1 W 1 W Durabilidad 182.5 TB 182.5 TB En el caso de las memorias destinadas a los ordenadores de consumo, estamos hablando de capacidades bastante reducidas (16 y 32 GB por ahora) que se usarán en combinación con nuestra unidad de almacenamiento principal. Aunque podemos hacerlo tanto con SSD como con discos clásicos, lo sensato es recurrir a estas memorias Intel Optane con discos mecánicos y compensar su reducida velocidad de funcionamiento respecto a los SSD. Además de un precio por GB altísimo, las Intel Optane solo pueden usarse en equipos muy específicos y actuales Al final, la teoría dice que podremos mejorar la velocidad general del sistema al actuar estos Intel Optane como una especie de memoria caché intermedia y muy rápida. Configurando las Intel Optane Pensar en comprar una memoria Intel Optane para nuestro PC no es una tarea sencilla. Lo primero que se necesita es un equipo bastante concreto. No todos los chipset valen (serie 200 o posterior), necesitamos slot M.2 y solo funcionará con procesadores Kaby Lake, es decir, de la última generación salida al mercado de consumo. Como sistema operativo solo podemos recurrir a Windows 10 de 64 bits, y necesitamos controladores específicos y configurar las memorias. Ahí es donde podemos activar o no el uso de los Intel Optane en nuestro sistema. El proceso, si la placa BIOS está correctamente actualizada y soportada, es el mismo que seguimos al instalar cualquier otra aplicación. Desde ella podemos tanto habilitar como desactivar la memoria Intel Octane, siendo necesario reiniciar el equipo para que el cambio surta efecto. La desventaja del precio La revolución que plantea la memoria Intel Optane tiene en el precio una de sus barreras más altas. La unidad de 16 GB cuesta actualmente 56 euros mientras que la de 32 GB sube hasta los 95 euros. Si comparamos con el precio de unidades SSD, la diferencia es considerable. Por esos 56 euros podemos instalar a nuestro PC un SSD WD Green M2 de 120 GB. Memorias Intel Optane a prueba Los escenarios en que las memorias Intel Optane cobran sentido en el ámbito de consumo no son muchos. El más común será aquel en el que disponemos de un disco duro mecánico de gran capacidad que queremos conservar por su excelente relación precio/GB, pero sin renunciar a un funcionamiento fluido del sistema, carga de programas e incluso juegos. Va a a ser extraño que alguien que disponga de los nuevos Intel Kaby Lake no haya optado por un SSD como unidad al menos para el sistema operativo. Pero si es el caso, las Intel Optane son la alternativa si no queremos comprar un SDD. Al instalar la memoria Intel Optane en este entorno, los 16/32 GB se suman y solo nos aparece una unidad de disco principal. A partir de ese momento será el sistema operativo el que se encargue de gestionar esa caché virtual extra. El equipo de pruebas, al tener que ser compatible, nos lo ha cedido en parte Intel. Se compone de una placa base ASUS Maximu IX Hero, procesador Intel Core i5-7500 a 3,4 GHz y la citada memoria Optane de 32 GB. El resto de la configuración es la habitual en nuestras pruebas hardware: disco duro Seagate de 1 TB / 7200 rpm y 16 GB de memoria RAM DDR4 2126 Mhz. Para esta prueba hemos optado por contar exclusivamente con la GPU interna del Intel Core i5, por considerarlo un entorno más lógico para este tipo de memoria del que queremos conocer el efecto real en fluidez del sistema. Tanto el sistema operativo (Windows 10 Home 64 bits) como la placa base y el resto de componentes hardware fueron actualizados con los últimos drivers disponibles antes de las pruebas. Tiempo de arranque y benchmarks El primer uso que queremos dar a la Intel Optane es el más inmediato: comprobar cuánto mejora el tiempo de arranque tanto del sistema operativo como de algunas aplicaciones. Con el equipo base sin la memoria Optane activada, medimos el tiempo que tarda el sistema en mostrarnos el escritorio tras pulsar el botón de encendido. Luego activamos Optane y realizamos lo mismo. Como vemos, es en este escenario de arranque del equipo, recuperación desde modo reposo o ejecución de aplicaciones (las diferencias se aprecian especialmente la primera vez que las abrimos en cada sesión) cuando las memorias Intel Optane sí que agilizan de manera sustancial un equipo incluso actual en el que solo contamos con disco duro mecánico. El siguiente paso ya tiene como protagonistas a los benchmarks habituales de rendimiento. Empezamos con PCMark8, concretamente
Tipos Charge Trap NAND Flash: BiCS, P-BiCS, VRAT, Z-VRAT, VSAT, A-VSAT, TCAT, V-NAND

La memoria flash de tipo NAND se presenta bajo diferentes tecnologías de transistores, como las de la puerta flotante o las de trampa de carga. En este artículo nos centraremos en ésta segunda tecnología, y veremos los tipos que existen dentro de esta familia, entre ellas la conocida como V-NAND de la que tanto se habla actualmente. Como sabes, la memoria flash es un tipo de memoria no volátil que se utiliza comúnmente en dispositivos electrónicos como unidades USB, tarjetas SD, SSDs y otros. A diferencia de la RAM, la memoria flash retiene los datos incluso cuando se corta la alimentación. Para ello, en vez de basarse en condensadores, como la RAM, las células de flash se basan en transistores, en celdas como las de tipo NOR y NAND. La principal diferencia entre la memoria NOR y la NAND radica en la estructura de sus celdas de memoria y en la forma en que se accede a los datos: Característica Floating Gate NAND Charge Trap NAND Densidad de almacenamiento Alta Muy alta Velocidad de lectura Rápida Rápida Velocidad de escritura Rápida Ligeramente más lenta Retención de datos Buena Muy buena Resistencia a la escritura Menor Mayor Complejidad de fabricación Alta Menor Dentro de las memorias de este tipo, tanto la memoria NOR como la NAND, utilizan transistores para almacenar datos como he comentado antes. Sin embargo, existen dos tipos principales de transistores utilizados en la memoria NAND: Floating Gate y Charge Trap. Tipos de Charge Trap NAND Tecnología Características Clave Ventajas Desventajas V-NAND Estructura vertical, alta densidad Mayor capacidad, menor tamaño físico Mayor complejidad de fabricación BiCS, P-BiCS Optimización para densidad y escalabilidad Alta densidad, bajo costo por bit Puede tener limitaciones en el rendimiento en algunas aplicaciones VRAT, Z-VRAT, VSAT, A-VSAT Optimización para rendimiento de lectura Mayor velocidad de lectura, latencia reducida Puede ser más compleja y costosa de fabricar TCAT Celdas más pequeñas, alta densidad Mayor capacidad en un área determinada Puede comprometer la fiabilidad y el rendimiento Para finalizar, entre los tipos de Charge Trap NAND que se utilizan para las actuales unidades SSD, pendrives, tarjetas de memoria, etc., tenemos que destacar los siguientes: Grupo 3D NAND La arquitectura 3D NAND representa un salto cualitativo en la densidad de almacenamiento, apilando celdas de memoria en capas verticales en lugar de solo horizontalmente. Es decir, se implementan chips de memoria y luego se apilan verticalmente, conectados mediante TSV entre sí, para que funcionen como una sola memoria con capacidad unificada. Dentro de estos tipos de memoria con transistores Charge Trap tenemos que destacar: Variantes de celdas 3D NAND A medida que la tecnología 3D NAND ha madurado, han surgido diversas variantes con características y optimizaciones específicas y que deberías conocer, como son:
El SSD sin DRAM económico de Micron podría significar el fin de las unidades SATA de bajo rendimiento: revisiones independientes muestran que supera al 990 EVO de Samsung en los puntos de referencia populares

DRAMless SSD es un vistazo al futuro Micron presentó recientemente su SSD de cliente 2650, el primero que se fabrica con NAND 3D de 276 capas, un nuevo récord para la compañía. La NAND Gen 9 ofrece la velocidad de E/S más rápida del sector con 3,6 GBps, que según Micron es un 50% más rápida que el envío de NAND de la competencia en un SSD y con hasta un 99% más de ancho de banda de lectura y un 88% mejor de escritura. También es un 73% más denso y tiene un área de tablero hasta un 28% más pequeña en comparación con los productos de la competencia. El SSD TLC (3 bits/celda) 2650 utiliza una interfaz PCIe gen 4 y viene en un factor de forma de goma M.2, disponible en tamaños 2230, 2242 y 2280, y en capacidades que van desde 256 GB a 1 TB. Resultados impresionantes Para ver cómo le iba al prometedor recién llegado, TweakTown enfrentó el SSD 2650 con una serie de competidores, incluidos productos de Crucial, Sabrent, Corsair, Western Digital y Seagate, utilizando una amplia selección de herramientas de evaluación comparativa. El sitio señala antes de la prueba que «ser un cliente o un SSD OEM trae consigo algunas desventajas en lo que se refiere a las comparaciones de rendimiento entre él y los SSD minoristas. Esto se debe a que los SSD de cliente, en general, están ajustados de manera diferente a los SSD de bricolaje minoristas. Los SSD OEM o de cliente están programados para sistemas preconstruidos en su mayoría donde el usuario final, en su mayor parte, ni siquiera verá o tocará el SSD». El rendimiento en las pruebas varió para el SSD 2650, pero se desempeñó bien en el PCMark 10 Full System Drive Benchmark, la prueba que TweakTown describe como la que «tradicionalmente pone de rodillas a los SSD sin DRAM». Solo fue superado por el propio P310 2TB N58R QLC de Crucial/Micron, actualmente el SSD sin DRAM minorista de mayor rendimiento, pero tuvo un mejor desempeño que él en otras pruebas. Si desea ver exactamente qué tan bien se compara el SSD 2650 con las otras unidades, incluido el 990 EVO de Samsung, querrá consultar los resultados completos de la evaluación comparativa, pero TweakTown lo resume maravillosamente diciendo: «El SSD OEM/cliente 2650 de 1TB de Micron no es el ‘más rápido’ de su tipo, pero sin duda es el más potente de su tipo y, de hecho, es el quinto SSD PCIe Gen4 basado en flash más potente jamás fabricado». Quizás lo más emocionante, concluye el sitio, «también nos da una introducción a una nueva novena generación de NAND de alta velocidad que trae consigo la promesa de SSD de 4 canales capaces de un rendimiento de 14 GB/s, una escalabilidad de infraestructura de IA enormemente mejorada y la velocidad necesaria para utilizar completamente PCIe Gen6 a medida que entra en juego».