SK Hynix define el futuro de la memoria: GDDR8, DDR6, 3D, PCIe 7.0 y UFS 6.0 para smartphones a partir de 2029

SK Hynix define el futuro de la memoria: GDDR8, DDR6, 3D, PCIe 7.0 y UFS 6.0 para smartphones a partir de 2029

SK Hynix acaba de revelar su roadmap más ambicioso hasta la fecha en el SK AI Summit 2025, una que extiende su visión tecnológica nada menos que hasta 2031. El fabricante surcoreano ya no habla solo de aumentar la densidad o la velocidad, sino de una evolución completa en torno a la Inteligencia Artificial y el PC gaming. En ese recorrido, la compañía separa claramente dos etapas: una transición agresiva entre 2026 y 2028 y una fase de consolidación entre 2029 y 2031, donde aparecerán las memorias y SSD de nueva generación. ¿Qué nos traerá el flamante nuevo líder de la industria de la memoria a nivel mundial? Dicha hoja de ruta se divide en dos bloques muy claros, con una transición en el medio de ellos donde no se esperan grandes cambios. Por ello, haremos lo propio y trataremos este artículo en dos partes para comentar las novedades que nos traerán los surcoreanos a partir del año que viene. SK Hynix muestra su nuevo roadmap hasta 2031 con grandes novedades, comenzando ya en 2026 La primera parte del plan, correspondiente a los años 2026 a 2028, marca el salto definitivo a la era HBM4 y LPDDR6. SK Hynix planea desplegar módulos HBM4 de hasta 16 capas y variantes HBM4E de 8, 12 y 16 capas destinadas a entornos de alto rendimiento, claramente para IA en concreto. En paralelo, desarrollará versiones personalizadas (Custom HBM4E) para clientes específicos del segmento de IA y supercomputación, léase NVIDIA, HBM y posiblemente Intel. En la memoria convencional aparece la LPDDR6 como nuevo estándar para portátiles y móviles, acompañada por LPDDR5X SOCAMM2, MRDIMM de segunda generación y versiones con procesamiento integrado (LPDDR6-PIM), muy esperadas, por ejemplo, por Apple. También se suma la segunda generación de CXL, la interfaz que unifica CPU, GPU y memoria en un mismo espacio coherente, clave para los centros de datos del futuro, y que promete no solamente más rendimiento, sino más coherencia y una mejor eficiencia. El almacenamiento tampoco se queda atrás: los SSD PCIe Gen 5 con capacidades de hasta 245 TB en formato QLC darán paso a modelos PCIe Gen 6 y a soluciones compactas cSSD, junto con memorias UFS 5.0 para dispositivos móviles. SK Hynix integrará además una línea de productos denominada AI-N D, pensada para unidades con soporte de aprendizaje automático a nivel de firmware y gestión predictiva del almacenamiento. Es la antesala del salto al almacenamiento realmente inteligente, donde los algoritmos optimizan la distribución de datos en tiempo real gracias a la IA. El futuro es inminente y traerá grandes novedades para terminar esta década y comenzar la siguiente El segundo bloque de la hoja de ruta, de 2029 a 2031, dibuja un futuro todavía más disruptivo. La protagonista es la llegada de la HBM5 y HBM5E, tanto en versión estándar como personalizada, que elevarán el ancho de banda y la eficiencia a niveles pensados para aceleradores de IA y GPU de nueva generación. En paralelo, la memoria convencional se renovará con GDDR7-Next, lo que ya se ha entendido entre analistas como la futura GDDR8, que irá precedida de la GDDR7X al parecer. Por otro lado, tendremos el debut de la DDR6 y 3D DRAM, todas enfocadas en aumentar la densidad y reducir la latencia en PC Gaming. SK Hynix anticipa además la tercera generación de CXL y un nuevo paradigma denominado PIM-Next, que integrará el procesamiento directamente dentro de la memoria. Como ya vimos con la LPDDR6-PIM. El almacenamiento experimentará un avance similar con los primeros SSD PCIe Gen 7 y chips NAND de más de 400 capas, una cifra que hoy parece ciencia ficción. También veremos unidades UFS 6.0 para móviles y dos familias emergentes bajo las siglas AI-N P (Storage Next) y AI-N B (HBF), que convertirán el almacenamiento en un sistema activo de análisis y distribución de datos. Por lo tanto, este roadmap hasta 2031 sitúa a SK Hynix como el actor que más lejos proyecta su desarrollo en memoria y almacenamiento, muy por delante de Samsung y Micron, evidenciando porqué está liderando el sector ahora mismo. Si se cumple, la compañía no solo acompañará la evolución del hardware de Inteligencia Artificial, sino que podría adelantarse a ella. Será interesante ver si Samsung y Micron siguen un calendario similar o si, por primera vez en años, SK Hynix marca el ritmo tecnológico en cuanto a innovación en todas las áreas y para toda la industria.

¿Dónde están las memorias CUDIMM de los principales fabricantes de RAM?

Ram Cudimm

Hace unos días V-Color anunciaba sus primeras memorias DDR5 de tipo CUDIMM y ayer lo hacía Asgard. Hoy nos encontramos con que el fabricante Biwin hace lo propio con sus nuevos módulos basados en esta tecnología. Pero, ¿dónde están las memorias RAM de tipo CUDIMM de fabricantes destacados como Corsair, Kingston, G.Skill o Crucial, entre otros importantes fabricantes? Las memorias CUDIMM, explicado de manera sencilla, agrega un controlador de reloj (CKD) para regenerar la señal de reloj. Esto lo que ofrece es una mayo estabilidad en las memorias y que puedan alcanzar frecuencias de trabajo más altas. Adicionalmente, permite a las mejores un ajuste dinámico de las tensiones de funcionamiento y frecuencias de reloj. Esto lo que nos aporta es una reducción de consumo, haciendo a las memorias más eficientes. Pero, sin lugar a dudas, lo más importante es que adoptar estas memorias no supone un sobrecoste. No se requiere de una placa base específica que soporte las nuevas memorias CUDIMM. Así, si tienes una placa base que admita memorias RAM DDR5, podrás instalar estas nuevas memorias. ¿Por qué los principales fabricantes de RAM no anuncian sus módulos CUDIMM? Igual puedes pensar que agregar el CKD al módulo de memoria es algo sencillo, ya que es solo «pegar» un chip más. Realmente, esto es algo un poco más complejo, ya que modifica el funcionamiento de las memorias. Es un proceso, que si bien no es excesivamente complejo, sí requiere de un tiempo de diseño y ajuste. Eso es algo lógico, pero, ¿cómo es posible que marcas poco conocidas ya las anuncien y grandes marcas como Corsair, Kingston o Crucial, entre otras, con grandes ingenieros expertos, aún no hayan dicho nada? Cierto es que tenemos anunciadas memorias CUDIMM de V-Color, Asgard y hoy ha sido Biwin quien ha anunciado sus memorias. Pero, ¿estas están en el mercado? No, simplemente han ducho que las van a lanzar al mercado, ni siquiera han dicho que las tienen terminadas. Nos decantamos más que todo sea una estrategia de marketing de estas empresas desconocidas para llamar la atención. De las tres marcas, la única así algo conocida es Asgard, que tiene algo más de nombre, aunque sigue siendo una marca menor (con todos los respectos). Lo cierto es que ninguna ha dado una fecha de lanzamiento de estas memorias y tampoco precios. Sí que han mostrado pruebas de funcionamiento y rendimiento, pero podrían ser perfectamente módulos de muestra. Sin lugar a dudas, marcas como G.Skill, Crucial, Corsair, Kingston, ADATA y otros fabricantes de memoria RAM están trabajando en sus módulos CUDIMM. Normalmente, estas marcas anuncian sus productos cuando ya están terminados y listos para lanzarse al mercado. Es bastante probable que no los anuncien por dos motivos. El primero sería que serían anunciados o mostrados por parte de Intel en su presentación de los nuevos procesadores Arrow Lake-S. La otra posibilidad bastante lógica es que estos fabricantes de módulos DDR5 esperen hasta el CES 2025, que se celebra la segunda semana de enero en Las Vegas, Estados Unidos. Bajo nuestro punto de vista, son los dos escenarios más probables. De lo que no dudamos es de que están trabajando en el desarrollo de nuevas memorias DDR5 de tipo CUDIMM.

Que significa PC3 12800s?

tipos dram

¿Qué significa PC3 12800s? Memoria Kingston La memoria DDR3-1600 tiene una clasificación del módulo para PC3-12800, lo que efectivamente significa que la velocidad de transmisión de datos pico del módulo es de 12,8GB/seg (ver tabla). Esto representa casi el 17% de mejora para el ancho de banda de la memoria en relación a la DDR3-1333. ¿Qué es PC3 10700? eso de «10600», «10666» y «10700» representa el pico maximo del ancho de banda y bueno siendo que se tienen 8bits por Byte, esos numeros surgen de esta multiplicacion: 1333×8=10664 (1600×8= 12800 o PC3-12800 para las 1600mhz), pero al final depende de cada fabricante la forma en que representa/nombra a la DDR3 1333mhz … ¿Qué son las memorias DDR3? – Definición de memoria DDR3 / DDR3 memory / dual data rate memory 3/ SDRAM DDR3: tecnología de almacenamiento electrónico aleatorio lanzada comercialmente en 2008, la cuál se conforma por una tarjeta plástica rectangular con medidas típicas de 133.35 mm X 31.75 mm X 1 mm., 240 terminales distribuidas en ambos lados … ¿Qué significa las letras de la memoria RAM? La memoria RAM (random access memory) o memoria de acceso aleatorio es un tipo de memoria volátil que permite almacenar datos e instrucciones de forma temporal mientras que el sistema hace uso de ella. Una vez dejan de usarse, esos datos desaparecen. ¿Qué es la frecuencia de las memorias RAM? Frecuencia de la RAM (MHz) La frecuencia de la RAM funciona a partir de los ciclos de reloj. Cada lectura y escritura se realiza en un ciclo. La RAM se mide por el número de ciclos por segundo que puede realizar. Por ejemplo, si la RAM está clasificada a 3200 MHz, realiza 3.200 millones de ciclos por segundo. ¿Cómo saber cuál es la frecuencia de una memoria RAM? Sus frecuencias fluctúan entre 800 MHz (el estándar PC4-12800), 933 MHz (el estándar PC4-14900), 1066 MHz (el estándar PC4-17000), 1200 MHz (el estándar PC4-19200), 1333 MHz (el estándar PC4-21300), y 1600 MHz (el estándar PC4-25600). ¿Cómo interpretar los datos de una memoria RAM? El segundo método es pulsar a la vez Control + Shift + Esc. Entrarás en el Administrador de tareas, donde tienes que ir a la pestaña Rendimiento y pulsar en Memoria. Verás la cantidad de memoria RAM que tienes, y también otra información útil como su velocidad, cuántas ranuras tiene y el factor de forma. Tasa de transferencia máxima de la memoria RAM Las memorias RAM son componentes electrónicos que ejecutan comandos al ritmo de un reloj cuya frecuencia es del orden del GHz. La tasa de transferencia máxima de las memorias RAM depende de esta frecuencia y del número de comandos ejecutados en cada ciclo de reloj. Las memorias DDR actuales permiten realizar dos comandos o transferencias de datos en cada ciclo. De hecho, el acrónimo DDR significa “Double Data Rate” en inglés, es decir “doble tasa de transferencia de datos”. Por ejemplo, si la frecuencia de la memoria DDR es 1600 MHz, puede realizar 2 × 1600 = 3200 millones de transferencias por segundo. Esta tasa de transferencia se expresa en MT/s (millones de transferencias por segundo) y aparece generalmente en las especificaciones de las memorias RAM. Se confunde a menudo con la frecuencia real de la memoria expresada en MHz. Por ejemplo, un módulo de memoria DDR4-3200 puede realizar 3200 millones de transferencias por segundo (3200 MT/s) y su frecuencia es 1600 MHz. Las memorias DDR4 utilizan un bus de 8 bytes (64 bits) para la transferencia de datos, por lo que su velocidad máxima en bytes por segundo será igual a ocho veces el número de transferencias por segundo. Por lo tanto, la velocidad máxima de un módulo de memoria DDR4-3200 será de 8 × 3200 millones de bytes por segundo, o 25600 MBytes/s. Esta información se encuentra a menudo en los nombres de los módulos de memoria RAM, así por ejemplo un módulo de memoria DDR4-3200 se llama a veces también PC4-25600. Los nombres utilizados por la industria redondean a veces la velocidad máxima para simplificar; así, el número de transferencias por segundo de la memoria RAM DDR4-2933 es 2933 MT/s, pero en su nombre su velocidad máxima se redondea a 23400 MB/s (en lugar de 23466,66 MB/s). La tabla siguiente contiene la velocidad, la tasa de transferencia de datos, la frecuencia y el nombre de los módulos de memoria más comunes. Frecuencia Tasa de Transferencia Velocidad Nombre 1066.66 MHz 2133.33 MT/s 17067 MB/s DDR4-2133 / PC4-17000 1200.00 MHz 2400.00 MT/s 19200 MB/s DDR4-2400 / PC4-19200 1333.33 MHz 2666.67 MT/s 21333 MB/s DDR4-2666 / PC4-21300 1466.67 MHz 2933.33 MT/s 23467 MB/s DDR4-2933 / PC4-23400 1500.00 MHz 3000.00 MT/s 24000 MB/s DDR4-3000 / PC4-24000 1600.00 MHz 3200.00 MT/s 25600 MB/s DDR4-3200 / PC4-25600 1733.33 MHz 3466.67 MT/s 27733 MB/s DDR4-3466 / PC4-27700 1800.00 MHz 3600.00 MT/s 28800 MB/s DDR4-3600 / PC4-28800 2000.00 MHz 4000.00 MT/s 32000 MB/s DDR4-4000 / PC4-32000 2066.67 MHz 4133.33 MT/s 33067 MB/s DDR4-4133 / PC4-33000 2133.33 MHz 4266.67 MT/s 34133 MB/s DDR4-4266 / PC4-34100 2200.00 MHz 4400.00 MT/s 35200 MB/s DDR4-4400 / PC4-35200 2250.00 MHz 4500.00 MT/s 36000 MB/s DDR4-4500 / PC4-36000 2300.00 MHz 4600.00 MT/s 36800 MB/s DDR4-4600 / PC4-36800 2400.00 MHz 4800.00 MT/s 38400 MB/s DDR4-4800 / PC4-38400 2550.00 MHz 5100.00 MT/s 40800 MB/s DDR4-5100 / PC4-40800 Como regla general, cuanto mayor sea su velocidad máxima, más rápida será la memoria y mayor será su precio. Tenga en cuenta que las velocidades más rápidas no son siempre compatibles con todos los microprocesadores. Es importante consultar las especificaciones técnicas de la CPU y de la placa base para verificar cuál es la velocidad de memoria máxima admitida antes de comprar una memoria ultra-rápida. Algunos pares de microprocesador / placa base admiten a veces velocidades más altas que las documentadas, los foros que tratan del overclocking de estos componentes le proporcionarán más información sobre este tema. Arquitectura interna de las memorias DDR4 Antes de ver unas características adicionales, es importante entender la arquitectura interna de las memorias DDR4. Cada bit de información de la memoria se almacena

SK hynix Chips DDR5 «A-Die» de 3 GB de segunda generación detectados, clasificados para 7200 MT / s

planta hynix

Una nueva generación de chips de memoria SK hynix DDR5 ha aparecido en línea, lo que marca el debut de los circuitos integrados de matriz A de 3 GB de segunda generación. Mostrado por primera vez por Kevin Wu de Team Group en Facebook, el chip lleva la marca X021 y el código de pieza «AKBD». Según el filtrador @unikoshardware, la etiqueta X021 lo identifica como el sucesor del chip M de 3 GB utilizado en los primeros módulos DDR5. Basado en el esquema de binning interno de SK hynix, la designación «KB» en AKBD probablemente corresponde a una velocidad JEDEC nativa de 7200 MT/s siguiendo la progresión establecida por la compañía desde «EB» (4800 MT/s) hasta «HB» (6400 MT/s). Este nuevo contenedor sugiere que SK hynix está preparando circuitos integrados DDR5 más rápidos dirigidos a las plataformas Intel de próxima generación, y se espera que Panther Lake y Arrow Lake Refresh admitan hasta DDR5-7200. Según los informes, la muestra que se muestra utiliza una PCB de 8 capas, lo que podría limitar el margen para un overclocking extremo más allá de 8000 MT / s. Para aprovechar al máximo el potencial del nuevo A-die, se espera que los fabricantes pasen a PCB de 10 o 12 capas para una mayor integridad de la señal. Si bien SK hynix aún no ha presentado oficialmente la pieza, esta aparición temprana del AKBD de 3 GB A-die insinúa que la producción ya puede estar en marcha. Para agregar algo de contexto, Samsung reinaba en los días de DDR4 con módulos de memoria de gama alta que casi siempre tenían los chips B-die seleccionados a mano por Samsung. Sin embargo, las cosas han cambiado en el mundo de la DDR5 con SK hynix tomando la delantera con sus chips A-die y M-die acaparando toda la atención.

OpenAI amarra memoria y centros en Corea con Samsung y SK Hynix

la ia consume memoria ram

La capital surcoreana ha sido escenario de una ronda de encuentros en la que OpenAI, Samsung y SK Hynix han alineado intereses para su macroiniciativa de centros de datos, conocida como Stargate. En esos contactos, se plasmó por escrito un objetivo que destaca por su envergadura: producir hasta 900.000 obleas de DRAM al mes y reforzar la construcción de infraestructuras de IA en el país. Las partes describen el paquete como una combinación de acuerdos preliminares de suministro de memoria y evaluaciones para nuevos emplazamientos. El mensaje es claro: Corea del Sur aspira a consolidarse entre los líderes en inteligencia artificial, mientras que OpenAI busca asegurar capacidad industrial y energética para sus próximos modelos. Una meta de producción que puede tensar la cadena de memoria Las obleas son discos de silicio sobre los que se fabrican chips; de cada una se obtienen numerosos circuitos que terminan siendo módulos DRAM o pilas HBM de alto rendimiento para servidores y centros de datos. El listón fijado contrasta con el mercado actual. Estimaciones del sector sitúan la capacidad global de obleas DRAM de 300 mm en torno a 2,07 millones mensuales en 2024, con una subida hacia 2,25 millones en 2025. Alcanzar 900.000 equivaldría a cerca del 39% de toda esa capacidad, una escala que ningún fabricante individual cubre por sí mismo y que ilustra la ambición del plan. La diferencia entre inferencia y entrenamiento ayuda a entender la cifra. Para entrenar modelos de nueva generación se agrupan miles de aceleradores, cada uno acompañado de grandes cantidades de memoria rápida, además de sistemas de refrigeración y potencia eléctrica a gran escala. De ahí que asegurar suministro de obleas no parezca un exceso, sino un requisito para la siguiente oleada de modelos. Al mismo tiempo, desde la industria se apunta que la demanda vinculada a Stargate podría superar ampliamente la capacidad mundial actual de HBM, reforzando el liderazgo de los grandes productores y empujando a toda la cadena de valor a invertir. Memorandos, actores implicados y nuevos centros en Corea Los documentos firmados recogen compromisos iniciales para ampliar la producción de memoria y evaluar nueva infraestructura en Corea del Sur. En ese frente, Samsung SDS participaría en el desarrollo de centros de datos, mientras que Samsung C&T y Samsung Heavy Industries estudiarían diseño y construcción. El Ministerio de Ciencia y TIC valora ubicaciones fuera del área metropolitana de Seúl y SK Telecom ha acordado analizar un emplazamiento en el suroeste del país. En paralelo, ambas compañías sopesan integrar ChatGPT Enterprise y capacidades de API en sus operaciones para optimizar flujos de trabajo e impulsar la innovación interna. El proyecto Stargate se apoya en una alianza con SoftBank, Oracle y la firma de inversión MGX, que contempla destinar 500.000 millones de dólares hasta 2029 a infraestructura de IA, con el foco puesto en Estados Unidos y efectos colaterales en ecosistemas como el surcoreano. Conviene subrayar que se trata, por ahora, de cartas de intención y memorandos: la ambición es alta, pero faltan detalles clave por cerrar. Los riesgos no son menores: posibles cuellos de botella en HBM/DRAM, necesidades eléctricas de varios gigavatios, permisos y la coordinación de proyectos con múltiples actores. El músculo de cómputo y el giro estratégico de OpenAI OpenAI viene tejiendo alianzas para elevar su capacidad de cómputo. Con Oracle y SoftBank prepara varios centros de datos de gran escala que aportarían gigavatios de potencia, mientras que NVIDIA ha anunciado inversiones de hasta 100.000 millones de dólares y el acceso a más de 10 GW mediante sus sistemas de entrenamiento. La relación con Microsoft ha sido decisiva: los desembolsos iniciales de 1.000 millones y posteriores de 10.000 millones dieron acceso a Azure, clave para entrenar modelos que impulsaron el auge de ChatGPT. Ahora, OpenAI avanza hacia infraestructuras con mayor control directo para reducir dependencia de un único proveedor. El ecosistema surcoreano también explora fórmulas novedosas junto a OpenAI, desde colaboraciones de diseño hasta conceptos como centros de datos flotantes, con el objetivo de acelerar la implantación de infraestructuras resilientes y eficientes. El mercado reaccionó con alzas notables tras los anuncios: Samsung subió en torno al 4%-5% hasta máximos de varias anualidades, mientras que SK Hynix rebotó cerca del 10% y el índice KOSPI superó los 3.500 puntos por primera vez. En conjunto, los movimientos añadieron decenas de miles de millones a su capitalización. Analistas del sector consideran que el empuje de Stargate disiparía temores sobre una caída inminente de precios en memoria HBM y podría actuar como catalizador para proveedores de equipamiento como ASML, dada la elevada demanda ligada a chips de memoria avanzada. El panorama que se abre combina ambición industrial y prudencia operativa: los memorandos dibujan una hoja de ruta que, si se materializa, aseguraría a OpenAI un caudal de memoria y nuevas instalaciones en Corea del Sur, mientras Samsung y SK Hynix afianzarían su papel en la carrera global por la IA; todo ello pendiente de cómo evolucionen la capacidad de producción, la energía disponible y los ritmos regulatorios.

Memoria y almacenamiento, al límite: la ola de IA vacía el “granero” de DRAM, NAND, SSD y HDD y dispara los precios

la ia consume memoria ram

La industria de la memoria vive una situación inédita: DRAM, NAND Flash, SSD y discos duros se han quedado simultáneamente en mínimos. Lo que durante meses se temió como un ciclo alcista sostenido ha desembocado en escasez generalizada que ya se nota en contratos y precios de contado, y que amenaza con trasladarse a lineales y presupuestos de hogares y pymes en las próximas semanas. La confirmación más contundente llega desde Adata, referente mundial en módulos de memoria. Su presidente, Simon Chen, resumió el momento con una imagen gráfica: el “granero” de los fabricantes está prácticamente vacío y los grandes proveedores de nube (CSP) —OpenAI, AWS, Google, Microsoft— han pasado a ser los competidores reales de los ensambladores y distribuidores tradicionales a la hora de asegurarse suministro. Nunca —dice— había visto en 30 años una escasez simultánea de las cuatro familias principales de memoria y almacenamiento. Qué está ocurriendo: cuatro mercados apretados a la vez El diagnóstico de Adata es claro: los CSP firman contratos masivos de servidores de IA por importes milmillonarios y arrastran consigo una demanda explosiva de HBM/DRAM y almacenamiento. El resto de clientes —PC, pymes, integradores locales, incluso parte del canal— reciben menos y más tarde. Cuándo se notará (y dónde) Aunque el consumidor aún puede encontrar producto en tienda, ese stock es el que ya estaba en los almacenes. Donde ya escasea es upstream: fabricantes (FAB) y distribuidores con inventarios reducidos a 2–3 semanas —cuando lo habitual eran 2–3 meses—. Adata habla de “vender con moderación y priorizar a los clientes clave”, a la espera de reposiciones. El traslado a precio está en marcha. Un kit DDR5 de 32 GB que a principios de año rondaba los 85 dólares supera ya los 120 en múltiples mercados. En el canal profesional, los contratos de DDR4/DDR5 apuntan a +20–30 % y el spot va por delante. En SSD la inercia es similar: si HDD se aprieta, NAND se recalienta. Por qué ahora: el “nuevo ciclo” de la memoria La memoria era, históricamente, un negocio de ciclos de 3–4 años: épocas de fuerte inversión, sobreoferta, bajada de precios, limpieza de inventarios y posterior recuperación. La IA ha cambiado las reglas. Según Adata, el alza se ha prolongado y desacoplado de ese patrón. El margen está en las líneas de valor (HBM para GPU, DDR5 densa para servidor), y ahí es donde se ancla la capacidad. No es solo una cuestión de capex: reabrir una línea de DDR4 no es trivial ni tiene sentido económico si la demanda más rentable está en otra parte. Esa es la asimetría: la base instalada fuera de hiperescala necesita componentes “anteriores”, pero el futuro del margen vive en HBM/DDR5 y NAND para cargas de IA. Consecuencias prácticas: del CPD a la pyme, pasando por el PC gaming El efecto dominó: cuando el HDD aprieta, el SSD se encarece La escasez en HDD —por prudencia de pedidos y inventarios depurados— impulsa a muchos clientes a acelerar migraciones a SSD, pero eso retroalimenta la tensión en NAND. Aunque varios fabricantes han anunciado expansiones de 15–30 %, la realidad industrial (equipos, sala blanca, ramp-up, rendimiento) hace que el alivio no llegue a corto plazo. Entre tanto, algunos compradores aseguran cupos trimestrales o anuales, lo que rigidiza aún más la disponibilidad para el canal abierto. El punto de no retorno para DDR4 El caso de DDR4 es paradigmático. Con líneas paradas o reducidas al mínimo, la oferta solo atenderá contratos heredados. Adata habla de escasez estructural y de “primar” clientes críticos. Para quienes mantienen infraestructuras o PC que dependen de DDR4, el mensaje es inequívoco: blindar ahora capacidad y repuestos puede evitar costes y paradas mayores dentro de unos meses. ¿Qué pueden hacer las empresas? 1) Auditoría de inventario y necesidades reales (90 días / 12 meses).Mapear consumos, plazos de renovación, picos estacionales y SLA internos. En CPD, evaluar consolidación de cargas y despliegues diferidos. 2) Estrategias de compra más largas.Donde sea posible, contratos a varios trimestres para asegurar cupo y precio. En pymes, trabajar con distribuidores que ofrezcan backorder y asignación. 3) Flexibilidad técnica.Explorar mix de capacidad/frecuencias en DRAM, perfiles RDIMM/LRDIMM según plataforma, y en almacenamiento combinar SSD TLC/QML con políticas de datos (tiering, cold storage en HDD cuando haya). 4) Eficiencia de software.Optimizar memoria en aplicaciones, compresión, paginación, deduplicación en hipervisores y gestión de cachés. La eficiencia puede liberar GB que hoy son oro. 5) Planes de contingencia.Para sistemas críticos, stock de seguridad y rotación de módulos; para oficinas, reutilización planificada (p. ej., mover DDR5 nueva a equipos clave y reciclar módulos a puestos menos críticos). Y los consumidores, ¿qué pueden hacer? Un mercado que ya no funciona como antes Para Adata, la nueva normalidad es que los CSP “no cancelan” y compiten con una escala cien veces mayor que los clientes tradicionales: así se prioriza capacidad y precio. La consecuencia es una reconfiguración del precio relativo de la memoria y el almacenamiento, con una fase alcista que se alarga más allá de lo habitual. En paralelo, el canal se vuelve más selectivo: “vender con moderación” y “apoyar a clientes principales” son instrucciones que revelan hasta qué punto la escasez se gestiona a mano. ¿Cuándo podría normalizarse? Aun con expansiones del 15–30 % en marcha, los tiempos de puesta en producción de nuevas líneas y los cambios de mix de producto hacen pensar en plazos largos: no habrá respiro inmediato. El ajuste dependerá de tres factores: Mientras tanto, el mercado retail resistirá con lo que hay en almacenes. Pero si la demanda de hiperescala no afloja, la tensión bajará por la cadena hasta las estanterías. Preguntas frecuentes ¿Por qué escasean a la vez DRAM, NAND, SSD y HDD?Porque la demanda de IA ha arrastrado capacidad hacia HBM y DDR5 de alto margen, dejando DDR4 en mínimos. La prudencia en pedidos de HDD empuja a muchos clientes a SSD, que a su vez tiran de NAND. Con inventarios bajos y plazos de expansión de >2,5 años, las cuatro familias quedan tensionadas a la vez. ¿Subirán más los precios de DDR4 y DDR5?Según Adata, los contratos DDR4/DDR5 ya reflejan +20–30 % entre finales de 2025 y primer semestre de 2026, con spot aún más alto. En DDR4 la escasez es estructural por la parada de líneas; en DDR5 el alza es más moderada, pero real. ¿Tiene sentido comprar ahora RAM o SSD?Si hay necesidad real (equipo de trabajo, servidor, ampliación urgente), sí: el riesgo de más subidas y falta puntual de stock es alto. Si es una compra discrecional, conviene comparar y valorar el cambio de plataforma para no invertir en componentes con oferta menguante (caso de DDR4). ¿Cuándo se normalizará el suministro?Aunque hay planes de +15–30 % de capacidad, el ramp-up industrial tarda más de 2,5 años. La normalización dependerá de cómo evolucione la demanda de centros de datos de IA y de la priorización de los fabricantes entre HBM/DDR5 y el resto de líneas. A corto plazo, no se espera alivio significativo.

ADATA y MSI lanzan el primer módulo de memoria DDR5 CUDIMM de 4 rangos del mundo

Ram Cudimm

ADATA y MSI han presentado el primer módulo DDR5 CUDIMM de 4 rangos del mercado, una apuesta conjunta con la que ambas compañías quieren dar un salto importante en capacidad para los equipos de sobremesa. Módulo DDR5 de 4 rangos: el doble de capacidad en el mismo espacio ADATA ha anunciado hoy esta colaboración con MSI, que aprovechará una de sus placas base basada en la plataforma Intel Z890 para poder exprimir al máximo el rendimiento de este nuevo hardware. El nuevo ADATA High Capacity DDR5 4-Rank CUDIMM utiliza una arquitectura de cuatro rangos que duplica la capacidad frente a los módulos habituales de dos rangos. La tecnología CUDIMM de ADATA se mantiene intacta, garantizando una baja latencia y una gran eficiencia en transferencia de datos, incluso en las condiciones más exigentes a las que puede enfrentarse. Está orientado a equipos que requieren gran cantidad de memoria, por lo que es una opción ideal para equipos profesionales o centros de datos, lo que deja claro que han mirado al emergente mercado de la IA. ADATA confirma además que el módulo funciona de forma estable a 5600 MT/s tras superar pruebas de validación y estrés en las futuras placas MSI Z890. De hecho, estas configuraciones permiten alcanzar hasta 256 GB en plataformas de dos DIMM (con 128 GB por módulo), combinando un rendimiento elevado y una gran capacidad para estaciones de trabajo. Aunque los jugadores más exigentes podrán beneficiarse de la combinación de velocidad y capacidad, este nuevo módulo apunta sobre todo a usuarios que necesitan trabajar con modelos de IA, edición de vídeo a gran escala, renderizado, análisis de datos locales o inferencia sin conexión. Con más margen de memoria, es posible mover proyectos complejos sin interrupciones y con una fluidez notable. Por tanto, la llegada del primer DDR5 CUDIMM de 4 rangos deja claro una vez más que las empresas están apostando por un hardware orientado a exprimir la inteligencia artificial al máximo, algo que ya se está pudiendo ver tanto en módulos de memoria RAM como el presentado, o en SSD.

Memoria Intel Optane

Memoria Intel Optane

Si nos vamos a la página de Intel, lo primero que vemos es «La tecnología Intel Optane ofrece una combinación incomparable de elevada capacidad de procesamiento, baja latencia, alta calidad de servicio y gran resistencia.» Como es obvio, esa es la versión de Intel. Si queréis que os sea sincero en el momento en el que estoy escribiendo estas líneas no sé si es una memoria en formato M.2 (por la capacidad podría ser aunque no por el formato) o es un disco M.2 con una capacidad muy pequeña. Por capacidad no puede ser un disco pero tampoco puede ser una sustituta de la memoria DRAM tradicional, así que de momento podríamos decir que es un híbrido o quizás un disco SSD con memoria cache. Vamos a intentar conocer un poco más a la memoria optane de la mano de Intel aunque, como es obvio, es parte interesada pero más tarde podremos comprobar si su utilidad es realmente algo a valorar en el día de hoy para aquellos que nos leéis, es decir para el usuario final. Digamos que mi idea de Intel Optane es como un complemento para los discos SSD aportando una solución de almacenamiento en cache con el fin de que, al almacenar los datos a los que más se ha accedido consigamos mayores velocidades en tiempos de arranque, carga de aplicaciones y juegos. Es decir, que Intel Optane no actúa como un disco duro sino que actúa como complemento a un disco duro. Muchos de vosotros diréis que eso ya lo hace la memoria RAM y estáis en lo cierto, pero con Intel Optane introducimos un nuevo concepto que es el de la memoria no volátil y es que cuando apagamos el PC y volvemos a encenderlo, todos esos datos almacenados en la memoria cache de nuestra DRAM ya se ha perdido y en cambio, con Intel Optane no es así pues la memoria es «No volátil». Para conseguir esto, debemos entender el concepto de 3D Xpoint en el que Intel y Micron llevan años trabajando para conseguir juntar las ventajas de la memoria Flash y la memoria DRAM. En comparación con la memoria NAND Flash, 3D Xpoint es mucho más rápido y en comparación con la DRAM es mucho más densa por lo que el coste por GB es mucho menor. La idea es buena pero aún está en un estado reciente y falta mucho por pulir. Una vez instalado el software IRST (Intel Rapid Storage Technology) digamos que la memoria optane se muestra transparente al Sistema y no vamos a poder acceder a ella y si en nuestro Sistema tenemos un disco SSD para por ejemplo el Sistema Operativo y las aplicaciones y un disco mecánico de 7200 o 5400 rpm que contiene todos los datos, Intel Optane va a actuar sobre ambas unidades convirtiéndolas en una unidad lógica. ¿Qué requerimientos necesita optane? De acuerdo con el fabricante, optane necesita una plataforma Kaby Lake o Z270 aunque se han realizado pruebas sobre Sky Lake y ha funcionado perfectamente. Más específicamente los requerimientos son los siguientes: Los requerimientos necesarios chocan, desde mi modesto punto de vista, con la filosofía de optane pues es en equipos de bajo presupuesto o de gama baja donde, sobre todo, podría desplegar todo su rendimiento sobre todo con discos de mecánicos. Por supuesto ni que decir tiene que Optane no es compatible con AMD y por tanto debemos descartar de esta ecuación a los actuales Ryzen de AMD. La memoria Optane se presenta en formato M.2, como habíamos dicho, en capacidades de 16 y 32 GB. La Unidad  Como os hemos dicho anteriormente, la memoria optane viene en un formato M.2 y es bastante sencilla. Con un PCB en color azul, en la parte más poblada podemos suponer los dos paquetes de memoria 3D Xpoint de 16 GB cada uno (nos han dejado para análisis la memoria de 32 GB). Digo podemos suponer porque es debajo de la etiqueta blanca donde se supone que tenemos los dos módulos. En la segunda foto podéis ver exactamente que se trata de la memoria optane de Intel de 32 GB de densidad y que es una muestra para análisis. La parte trasera es más simple aún, dejando el PCB completamente desnudo aunque se encuentra una etiqueta negra con más datos sobre la memoria optane. Comenzamos levantando la etiqueta pero vimos que tenía un recubrimiento térmico de cobre por lo que no nos atrevimos a seguir tirando de ella por la posibilidad de no dejarla de la misma forma que venía de fábrica. EL TESTEO Y por fin llegó el momento de testear la memoria Optane. La hemos testeado sobre una configuración cedida por Intel para realizar las pruebas que consta del siguiente hardware: Por supuesto, el Sistema Operativo Utilizado ha sido Windows 10 Pro 64 bits. Recordad que uno de los requerimientos es que optane solo puede correr bajo Windows 10. El testeo se ha realizado con las típicas aplicaciones de bench para Discos Duros que ya hemos utilizado habitualmente. Os vamos a poner el rendimiento del disco SSD por separado y el rendimiento del mismo con la memoria Optane. Antes que nada os vamos a explicar paso a paso cómo se debe activar Intel Optane en nuestro ordenador. Por supuesto instalamos Opotane en una ranura M.2 del ordenador e inmediatamente después de reiniciar el sistema veréis que ni la Bios de la placa ni Windows la reconoce. Es normal, como os dijimos al principio, Optane es transparente a nuestro sistema y cuando lo ponemos en Raid con nuestro disco solo veremos el disco. Optane se puede activar de dos formas diferentes. La más profesional, digamos, es ejecutando IRST (Intel Rapid Storage Technology) que es un controlador que habitualmente no se instala en nuestros PCs pero, más allá de Optane, os aconsejo encarecidamente que lo hagáis por las funcionalidades que ofrece a nuestros discos. La otra forma de instalarlo es para los menos entendidos mediante un software que pone Intel a nuestra disposición en

HyperX Fury RGB, review: memoria RAM DDR4 con un toque de luz

HyperX-Fury-RGB-Review-RGB

La memoria RAM es uno de los componentes esenciales de un ordenador. Una buena memoria RAM, con alta velocidad y baja latencia, puede sacar mucho más provecho al procesador y los SSD y NVMe, lo que se traduce en una mejora general del rendimiento del PC. Si estamos buscando unas buenas memorias RAM DDR4 para nuestro ordenador, entonces sin duda debemos echar un vistazo a las HyperX Fury RGB. Las gama de memorias RAM DDR4 HyperX Fury RGB son una gama de memorias que llevan ya tiempo en el mercado. Su principal característica es que estas memorias son capaces de hacerse overclock a sí mismas de forma automática logrando alcanzar unas frecuencias de hasta 3466 MHz. Estas memorias están preparadas para hacer uso de los perfiles XMP y se pueden encontrar en velocidades que van desde los 2400MHz hasta los 3466MHz. Las latencias que ofrecen estas memorias son de CL15 a CL19, con capacidades de módulo único de 4GB a 16GB y capacidades en kit de 16GB a 64GB. Estas memorias RAM además son compatibles tanto con procesadores Intel como con las últimas CPU de AMD. Cuentan con garantía de por vida. A continuación, vamos a ver qué tal rinden. Características y especificaciones técnicas de las memorias RAM HyperX Fury RGB Las RAM DDR4 HyperX Fury RGB están diseñadas para funcionar a unas frecuencias que varían desde los 2400 MHz hasta los 3466 MHz. Además de ajustarse automáticamente a la velocidad de la CPU para poder funcionar a máximo rendimiento, estas memorias cuentan con perfiles XMP, compatible con Intel y procesadores AMD, para ajustar su frecuencia y sus latencias de forma automática. El voltaje de funcionamiento de estas memorias es de 1.2 V. Estas memorias están diseñadas en módulos de 4 GB, 8 GB y 16 GB. Además, se venden en kits de memoria que van desde los 16 GB hasta los 64 GB. Al ser memorias DDR4 cuentan con 288 pines de contacto. La principal novedad de las nuevas HyperX Fury DDR4 RGB es que vienen equipadas con una barra de luz LED RGB. Este sistema de iluminación utiliza HyperX Infrared Sync que permite a los módulos estar sincronizados sin cables. Además, este sistema de iluminación es compatible con ASUS Aura Sync, Gigabyte RGB Fusion y MSI Mystic Light Sync. Unboxing, análisis y primeras impresiones de las memorias RAM HyperX Fury RGB Nosotros vamos a analizar el pack de 2×8 GB @ 3200 MHz de memoria RAM DDR4 de HyperX Fury RGB. Este pack viene en un blister de plástico con una pegatina que, además de hacer de precinto, nos muestra las principales características de estos módulos. Dentro del blister vamos a encontrarnos con los dos módulos de memoria, además de con un folleto de garantía y una pegatina de HyperX para lucir de memorias. Estas memorias tienen un disipador de aluminio de color negro. Además de darlas un toque elegante, este disipador ayuda a bajar la temperatura de las memorias, lo que se traduce en un mejor funcionamiento y una vida útil más larga. En una de las caras vamos a encontrarnos con el logo de HyperX y el modelo Fury, mientras que en la otra veremos una pegatina con las especificaciones técnicas. El disipador ocupa prácticamente la memoria entera. Además, está bien sujeto y no se recomienda desmontarlo, por lo que no podemos ver muchos más detalles de las memorias. En la parte inferior encontramos los contactos que, como en todas las memorias DDR4, se hacen más gordos en la parte central. Una de las novedades de este nuevo modelo de memorias RAM respecto al modelo Fury anterior es que ahora vienen con iluminación RGB en la parte superior, un detalle que es de agradecer ya que hoy en día todos queremos tener un ordenador iluminado. Pruebas de rendimiento de las memorias RAM HyperX Fury RGB Hemos querido poner a prueba estas memorias utilizando dos ordenadores diferentes. Por un lado las hemos puesto a prueba con lo último de AMD, un procesador AMD Ryzen 9 3900X con una placa base AORUS X570 MASTER. Por otro lado la hemos puesto con un hardware de gama alta aunque de generación pasada, un Intel i7 8700K y una placa base ASUS TUF Z390-Pro Gaming. HyperX Fury RGB en AMD Ryzen 9 3900X Lo primero que vamos a hacer es echar un vistazo a todas las propiedades y especificaciones de estos módulos de RAM utilizando el software CPU-Z. Como podemos ver, además de dos perfiles JEDEC a 2400 MHz, también nos encontramos con dos perfiles XMP, uno a 3200 MHz y latencias CL16, y otro a 3000 MHz y latencia CL15. La primera prueba que hemos realizado ha sido con el software AIDA64 para comprobar las velocidades de lectura y escritura. También hemos usado el software 7Zip para medir la velocidad a la hora de comprimir y descomprimir archivos, una tarea donde la RAM es fundamental. La memoria RAM también influye mucho a la hora de realizar operaciones aritméticas. Gracias a las aplicaciones wPrime y SuperPI vamos a poder ver qué tan rinden estas memorias. Sin duda, unos rendimientos sobresalientes, tal como cabría esperar de unas memorias de 3200 MHz. HyperX Fury RGB en Intel i7 8700K En el caso de Intel, hemos realizado las mismas pruebas. Lo primero ha sido obtener la información y comprobar las características de los módulos de RAM desde el software CPU-Z. Después hemos usado el software AIDA64 para poder medir la velocidad de lectura y escritura de la memoria RAM. De nuevo, el software 7Zip nos permite medir la velocidad a la hora de comprimir y descomprimir archivos. Y las aplicaciones wPrime y SuperPI nos permiten comprobar, además de la estabilidad de la memoria, su excelente rendimiento a la hora de desempeñar operaciones matemáticas complejas.

Qué quiere decir Dual Rank o Single Rank en las memorias RAM – ¿Cuál es mejor?

Qué quiere decir Dual Rank o Single Rank en las memorias RAM - ¿Cuál es mejor?

Las memorías RAM es uno de los componentes más complicados de elegir debido a que tiene un número muy alto de parámetros representativos. En este artículo vamos a analizar un aspecto de la fabricación de los módulos de memoría que suele levantar muchas dudas: Single Rank (rango único) o Dual Rank (rango doble). ¿Qué son los rank o rangos de memoria? Cada módulo de memoria tiene un conjunto de chips DRAM a los que se accede al escribir o leer información. Estos chips de memoria pueden estar situados en un lado del módulo de memoria o en ambos lados. Y, además de eso, están organizados para guardar 64 bits de información (esto es lo que el organismo independiente de normalización JEDEC ha denominado “rank”). Diferencias básicas entre los rangos de memoria El número de rangos puede indicar la capacidad de almacenamiento de la memoria RAM. Sin embargo, depende sobre todo de la tecnología de los chips colocados en el lápiz de memoria y de la generación DDR. Muchas de las memorias DDR4 de 16 GB actuales son de doble rango porque la mayoría de los chips IC tienen capacidad para 1 GB de almacenamiento. Sin embargo, los chips RevB de mayor capacidad de Crucial permiten almacenar hasta 16 GB en un solo rango (utilizados en sus módulos de memoria Ballistix Max). Dado que se puede tener un módulo de 8 GB o incluso de 16 GB en un solo rango, es posible utilizar tarjetas de memoria de 32 GB de doble o cuádruple rango. Por el momento no existe ningún módulo de memoria DDR4 de 32 GB de rango único. Pero a medida que avance la tecnología, es posible que también los veamos. Ventajas Dual Rank Aunque un módulo de RAM puede tener dos o más rangos por tarjeta, el controlador de memoria sólo puede acceder a uno a la vez. Lo bueno es que mientras la CPU accede a un banco de memoria, el otro puede someterse a un ciclo de actualización (preparándose para acceder). Este proceso, denominado intercalación de rangos, es similar a la intercalación de bancos SDRAM. El enmascaramiento y la canalización de los ciclos de actualización suelen mejorar el rendimiento de las aplicaciones que hacen un uso intensivo de la CPU, ya que reducen los tiempos de respuesta de la memoria. Sin embargo, este mejora es ligera entre el 3 y 5% en la mayoría de los casos. Dicho esto, una mejora de la latencia y/o la frecuencia CAS contribuyó a aumentar mucho más el rendimiento. Estos deben seguir siendo los principales factores de compra. Ventajas Single Rank En cambio, hay ciertas aplicaciones que pueden verse afectadas por la latencia. En estos casos será mejor una memoria de rango único. Además, como los módulos DIMM de rango único (SR) tienen la mitad de chips, producen menos calor y pueden ser más estables que los módulos de rango doble (DR). Por eso son tan populares entre los entusiastas del overclocking. Diferencia entre rango y canal de memoria Los rangos tienen que ver con el número de chips de memoria que hay en una memoria RAM. Esto es diferente del número de canales de memoria que una CPU y una placa base pueden soportar. Por tanto, una configuración de doble canal y doble rango permite disfrutar de lo mejor de ambos mundos: el mayor ancho de banda de una configuración de doble canal y el intercalado de rangos. Dos formas comunes de crear una configuración de doble canal y doble rango son: Dicho esto, tener más canales siempre es mejor que tener rangos dobles o cuádruples. Siempre hay que optar primero por una configuración de doble canal, después por una frecuencia de memoria más alta y una latencia más baja, y sólo entonces hay que considerar el número de rangos. ¿Cómo saber si la RAM es de rango único o doble? Contar los chips no siempre es fiable, ya que cada chip puede tener una capacidad diferente dependiendo del fabricante. Además, debido al uso de disipadores de calor, los chips no siempre son visibles. Ten en cuenta que algunos fabricantes a veces distribuyen un único rango en ambas caras, por lo que tener módulos con chips en ambas caras no significa necesariamente que se trate de un DIMM de doble rango. La forma más fácil es con el programa CPU-Z. Si lo abrimos y vamos a la pestaña SPD, podremos ver el apartado Rank:

Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos y para mostrarte publicidad relacionada con sus preferencias en base a un perfil elaborado a partir de tus hábitos de navegación. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos.
Privacidad